skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tahora, Sharaban"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In today’s fast-paced software development environments, DevOps has revolutionized the way teams build, test, and deploy applications by emphasizing automation, collaboration, and continuous integration/continuous delivery (CI/CD). However, with these advancements comes an increased need to address security proactively, giving rise to the DevSecOps movement, which integrates security practices into every phase of the software development lifecycle. DevOps security remains underrepresented in academic curricula despite its growing importance in the industry. To address this gap, this paper presents a handson learning module that combines Chaos Engineering and Whitebox Fuzzing to teach core principles of secure DevOps practices in an authentic, scenario-driven environment. Chaos Engineering allows students to intentionally disrupt systems to observe and understand their resilience, while White-box Fuzzing enables systematic exploration of internal code paths to discover cornercase vulnerabilities that typical tests might miss. The module was deployed across three academic institutions, and both pre- and post-surveys were conducted to evaluate its impact. Pre-survey data revealed that while most students had prior experience in software engineering and cybersecurity, the majority lacked exposure to DevOps security concepts. Post-survey responses gathered through ten structured questions showed highly positive feedback 66.7% of students strongly agreed, and 22.2% agreed that the hands-on labs improved their understanding of secure DevOps practices. Participants also reported increased confidence in secure coding, vulnerability detection, and resilient infrastructure design. These findings support the integration of experiential learning techniques like chaos simulations and white-box fuzzing into security education. By aligning academic training with realworld industry needs, this module effectively prepares students for the complex challenges of modern software development and operations. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026